Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem

نویسندگان

  • YVES COUDIÈRE
  • JEAN-PAUL VILA
  • PHILIPPE VILLEDIEU
چکیده

In this paper, a class of cell centered finite volume schemes, on gênerai unstructured meshes, for a linear convection-diffusion problem, is studied. The convection and the diffusion are respectively approximated by means of an upwind scheme and the so called diamond cell method [4]. Our main resuit is an error estimât e of order h, assuming only the W (for p > 2) regularity of the continuous solution, on a mesh of quadrangles. The proof is based on an extension of the ideas developed in [12]. Some new difficultés arise hère, due to the weak regularity of the solution, and the necessity to approximate the entire gradient, and not only its normal component, as in [12]. Résumé . Dans cet article, on étudie une classe de schémas volumes finis sur des maillages stucturés généraux, pour un problème linéaire de convection diffusion. La convection est approchée par un schéma décentré amont, et la diffusion par un schéma dit "des cellules diamants" [4]. On démontre une estimation d'erreur d'ordre h pour une solution continue dans W' (p > 2), sur des maillages de quadrangles. La démonstration est une généralisation des idées de [12]. Les nouvelles difficultés sont la régularité plus faible de la solution exacte et la nécessité de construire une approximation du gradient et pas seulement de sa composante normale aux interfaces. AMS Subject Classification. 65C20, 65N12, 65N15, 76R50, 45L10. Received: September 24, 1996. Revised: November 14, 1997 and May 4, 1998.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes

We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion équation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H finite volume space. We actually prove...

متن کامل

Convection in a Tilted Square Enclosure with Various Boundary Conditions and Having Heat Generating Solid Body at its Center

In this study free convection flow and heat transfer of a fluid inside a tilted square enclosure having heat conducting and generating solid body positioned in the center of the enclosure with various thermal boundary conditions has been investigated numerically. The governing equations are transformed into non-dimensional form and the resulting partial differential equations are solved by Fini...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Fast explicit operator splitting method for convection-diffusion equations

Systems of convection–diffusion equations model a variety of physical phenomena which often occur in real life. Computing the solutions of these systems, especially in the convection dominated case, is an important and challenging problem that requires development of fast, reliable and accurate numerical methods. In this paper, we propose a second-order fast explicit operator splitting (FEOS) m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017